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Abstract
Large language models (LLMs) frequently gener-
ate confident yet factually incorrect content when
used for language generation (a phenomenon of-
ten known as hallucination). Retrieval augmented
generation (RAG) tries to reduce factual errors
by identifying information in a knowledge cor-
pus and putting it in the context window of the
model. While this approach is well-established
for document-structured data, it is non-trivial to
adapt it for Knowledge Graphs (KGs), especially
for queries that require multi-node/multi-hop rea-
soning on graphs. We introduce ULTRAG, a gen-
eral framework for retrieving information from
Knowledge Graphs that shifts away from classical
RAG. By endowing LLMs with off-the-shelf neu-
ral query executing modules, we highlight how
readily available language models can achieve
state-of-the-art results on Knowledge Graph Ques-
tion Answering (KGQA) tasks without any re-
training of the LLM or executor involved. In
our experiments, ULTRAG achieves better per-
formance when compared to state-of-the-art KG-
RAG solutions, and it enables language models
to interface with Wikidata-scale graphs (116M
entities, 1.6B relations) at comparable or lower
costs.

1. Introduction
Large language models (LLMs) have rapidly evolved to
become a key source of information and a valuable tool for
natural language tasks. However, despite impressive linguis-
tic capabilities that emerged by scaling the size of models
and training datasets, LLMs remain notoriously unreliable
when it comes to their factual correctness. In particular, a
frequently observed failure mode is the overconfident gener-
ation of plausible, yet fabricated content that is unsupported
or even contradicted by facts (Huang et al., 2025a).

Mitigating these so-called hallucinations is a central chal-
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lenge for LLM research, potentially unlocking a wide
range of applications that strongly rely on trustworthy lan-
guage models. Retrieval-augmented generation (RAG) has
emerged as a central strategy for grounding LLMs in ex-
ternal knowledge sources by identifying and retrieving in-
formation relevant to a query from an unstructured corpus
of documents (Lewis et al., 2020; Borgeaud et al., 2022;
Izacard et al., 2023). However, not all real-world informa-
tion is organized as documents. Knowledge Graphs (KGs)
such as Wikidata (Vrandečić & Krötzsch, 2014) or domain-
specific KGs, often containing proprietary enterprise data,
represent a huge source of reliable, interpretable, and easily
updatable information, stored in a highly efficient way as
(subject, predicate, object) triples. Unfortunately, translat-
ing the key concepts of RAG to graph-structure data is not
an obvious task, as relevant facts are often distributed across
multiple entities and relations within the graph, which need
to be considered together to provide a complete picture of
the available knowledge. While some approaches for using
KGs to augment LLMs have been developed (Mavromatis
& Karypis, 2025; Li et al., 2025), they often fail for more
complex queries that require deeper understanding of logic
(Cattaneo et al., 2025), and at the same time they do not
scale well to large KGs with hundreds of millions or even
billions of entities and relations.

Main Contributions We present ULTRAG, a general
framework for information retrieval from KGs that can be
applied efficiently and effectively to arbitrary web-scale
graphs and can be implemented with off-the-shelf compo-
nents with no retraining of the modules involved. The key
idea at the base of ULTRAG is that a successful LLM-based
Knowledge Graph Question Answering (KGQA) system
needs to be robust to both LLM and KG imperfections (Sec-
tion 3). Motivated by this intuition, we argue for the need
of using neural query-execution modules for interfacing
with real-world KGs. In our experiments, we show that
such executors achieve∼16% improvement on average over
symbolic ones when used as a tool by LLMs ceteris paribus.
In addition, our version of ULTRAG implemented with
foundational query execution modules (ULTRAG-OTS)
achieves zero-shot state-of-the art results on various induc-
tive KGQA benchmarks (even when compared to transduc-
tive approaches finetuned on the specific datasets), and it is
able to effectively scale to KGs the size of Wikidata (116
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million entities and 1.6 billions triples). To the best of our
knowledge, ULTRAG is the first framework that is able to
successfully combine LLMs with query execution modules
for KGQA systems, and in doing so it highlights a research
direction that appears underexplored in the literature so far.

Related work For graph-structured knowledge sources,
prior RAG approaches can be generally grouped into four
main categories: KG agent-based approaches, path-based
approaches, graph neural network (GNN)-based approaches,
and query-based approaches. KG agents (Sun et al., 2024;
Chen et al., 2024) are LLMs that are trained to reason over
KGs, starting from a given seed entity and exploring the
KG step by step until a likely answer is found. Path-based
approaches (Luo et al., 2024; 2025a) first retrieve a set of
relevant paths (a chain of relations) between the seed entities
(entities mentioned in the question) and other entities, and
then use an LLM to reason over these paths to select the
most likely answer. GNN-based approaches have been rela-
tively sporadic in the literature so far, with Mavromatis &
Karypis (2025); Mavromatis et al. (2025) being among the
most prominent ones. These methods compute node/relation
embeddings and use them to compute a score for each en-
tity to be the answer. Similarly, query-based approaches,
which translate natural questions into structured executable
queries, have received little attention in the literature to date,
largely due to relatively poor performance (Das et al., 2021;
Yu et al., 2022; Mavromatis & Karypis, 2025). While not
falling squarely in any of the previous categories, we should
also highlight that there are approaches, like SubgraphRAG
(Li et al., 2025), that fuse together ideas from more than one
of the above groups.

Analogously to Li et al. (2025), our approach can be clas-
sified as a hybrid solution for KGQA systems, since (as
we shall see) it combines the use of LLMs (for generating
queries and reasoning over retrived information) and GNNs
(for running queries over KGs) to produce the desired an-
swers. Yet, it differs from prior art by explicitly requiring the
GNN to be aligned with the behaviour of a symbolic query
executor. The idea of aligning (graph) neural networks with
algorithms (a.k.a. neural algorithmic reasoning; NAR) has
first been proposed by Veličković et al. (2020), with further
theoretical foundations developed by Xu et al. (2021; 2020).
While there has been success in applications of this class of
models (Deac et al., 2021; Yu et al., 2023; Numeroso et al.,
2024), their use as a LLM tool (this work) has never been
explored to the best of our knowledge. Notably, if viewed
through the lens of NAR, this work corresponds with the
largest-scale application of NAR to date, with the second
being Numeroso et al. (2024) (graphs up to 6M edges).

2. Background
Knowledge Graphs A knowledge graph G = (V,R, E)
is a database represented as entities V , a finite number of
relation types R, and relations between entities E ⊂ V ×
R× V . Relation triplets (h, r, t) ∈ E consist of a head h, a
tail t and relation type r. Usually, |R|≪ |E|. Knowledge
graphs are often incomplete (Paulheim, 2016) and contain
redundant information (Akrami et al., 2020), mainly as a
result of automated construction (Zhong et al., 2023).

From Link Prediction to Relation Projection Due to
the incompleteness of knowledge graphs (i.e. missing re-
lations between entities), there has been growing interest
in learnable solutions for solving link prediction problems
(Bordes et al., 2013; Yang et al., 2015; Trouillon et al., 2016;
Dettmers et al., 2018). Graph Neural Networks (GNNs) ap-
peared in particular as a prominent class of approaches for
inductive KG-completion tasks, thanks to their ability to
generalize over unseen entities and connectivity patterns
(Schlichtkrull et al., 2018; Zhang et al., 2020; Zhu et al.,
2021; 2023). In the domain of graph-based machine learn-
ing, the standard recipe for link prediction uses the embed-
dings of the edge (relation) hr, and its two endpoints hu and
hv (Bronstein et al., 2021), to predict the existence of a link.
However, in the presence of symmetries in the connectivity
of knowledge graphs, this recipe can underperform without
the use of labelling tricks. As shown by Zhang et al. (2021),
when predicting whether (u, r, v) exists, labelling u and
v differently from the remaining part of V is theoretically
optimal. Unfortunately, this also comes at high computa-
tional cost, as node embeddings need to be recomputed for
each possible link one might want to predict. To address
this limitation, ID-GNN (You et al., 2021) reformulates the
task, conditioning node embeddings only on source node u
(rather than on candidate link (u, r, v)), and then predicting
the probability for all v ∈ V to be the tail of an r relation.
Thanks to its reduced complexity, this formulation gained
popularity in recent years, and it has been adopted by mod-
els such as NBFNet (Zhu et al., 2021), which often serves
as a baseline for inductive link prediction tasks.

Foundation models for knowledge graphs While in the
previous paragraph we briefly discussed methodologies ca-
pable of generalizing over unseen nodes and connectivity
patterns, an ideal link predictor should also be able to pro-
cess KGs built with previously unseen relation types. In this
direction, Galkin et al. (2024a) recently introduced ULTRA,
a foundation model for knowledge graph completion, which
generalizes across KGs with different relation vocabular-
ies by making relation type embeddings a function of their
relative interactions. To achieve this, ULTRA builds an auxil-
iary graph GR = (R,Rfund, ER), with relation typesR as
nodes, relation interactions as edges ER and four fundamen-
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Figure 1. ULTRAG pipeline. The LLM is provided with the syntactic rules for queries and the relation types. Ground-truth seed entities
(Turing Award, Deep Learning, etc.) may be given, but, if not, an entity linking step takes place. The generated query is then neurally
executed against the knowledge graph (each node receives a probability to be an answer at this stage). The most likely query answers are
fed back to the LLM, which weighs both the returned probabilities and the semantic meaning of entities, and produces a final answer set.

tal relation interaction typesRfund = {h2h, t2t, h2t, t2h}.
The relation interaction types describe the four possible
ways in which two relation types can interact with each
other (i.e. two relation types can share same head, can share
same tail, the head of one can be the tail of the other, and the
tail of one can be the head of the other). Whenever a relation
projection (u, r, ?) (i.e. a link prediction task) is performed
on G, relation type embeddings are computed by applying a
GNN on GR. Tail probabilities for projection (u, r, ?) are
then inferred by initializing relations representations (and
the embedding of source node u) on G with the output of
said GNN, and applying an inductive link predictor such as
the ones described in the previous paragraph. For further
details, we refer the reader to Galkin et al. (2024a).

Foundation models for logical query reasoning Beyond
knowledge graph completion, another relevant task on KGs
is complex logical query answering (CLQA). In short, pro-
vided a compositional query built by several projections
and logical operators (i.e. written in first-order logic), the
goal is to retrieve the set of entities that verify the query
based on the information contained in the knowledge base.
In the absence of noise, a symbolic executor would always
be able to infer the correct entities that verify the query
simply by “walking” over the edges of the provided graph.
However, in real-world scenarios, things are not as easy.
Due to the incompleteness of the knowledge base, some
relevant connections might indeed be missing, and as a re-
sult one might need to resort to link prediction modules to
infer the likelihood of a node being part of the solution set.
Along these lines and building on top of ULTRA, Galkin
et al. introduced ULTRAQUERY (Galkin et al., 2024b), a
foundational logical query answering system operating with
fuzzy sets1. Starting from the leaves (e.g. Turing award
in Figure 1), ULTRAQUERY builds the answer upwards: it

1A fuzzy set S is a generalization of a set where each element
u has ”membership” µS(u) ∈ [0; 1] to S.

either projects an intermediate result with a relation (e.g.
(y,University, ?)) using ULTRA’s link prediction capa-
bilities, or uses fuzzy logic to combine previous projection
results (at each intermediate step, the likelihood of a node
satisfying a portion of the query can thus be seen as the
membership function of a fuzzy set). While the architecture
used for ULTRA remains the same, Galkin et al. retrain its
weights to make the model able to deal with non-leaf rela-
tion projections, where the input is a generic membership
function over the node set, rather than a Kronecker’s delta
centered over a source node.

3. ULTRAG
Our approach builds on the following two key insights:

Key insight #1: A successful query executor has to be
robust to “LLM+KG noise”, hence it should be neural.

The first insight comes from our observations that LLMs
cannot be easily2 and reliably constrained to build queries
that use only existing triplets (LLM noise). A method like
GCR (Luo et al., 2025a) that restricts the usable LLM output
tokens for query generation, requires a modification to the
LLM pipeline which is often infeasible and even impossible
for closed LLMs. Moreover, KGs are incomplete (KG noise)
and have missing relations, so such an approach may be
robust to LLM noise, but susceptible to KG noise.

Prior research has made similar observations (Das et al.,
2021; Yu et al., 2022; Mavromatis & Karypis, 2025) which
is why the field has mostly moved away from LLM-written
graph queries run with symbolic executors, and instead
delegates the query execution/reasoning to the LLM. This
brings us to our second insight:

2E.g. giving relation types to the LLM or prompt engineering.
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Algorithm 1 ULTRAG Recipe

Require: Question q ∈ T , Knowledge Graph G =
(V,R, E), Neural Query ExecutorX : 2F×Φ×G → F ,
Entity Linker L : Φ×2F → 2F , DeciderD : F×T →
{True,False}, Arbitrator A : F × Φ× T → 2V , (op-
tional) seed entities S ⊆ V

Ensure: Answer set A ⊆ V

1: P ←

{
{xs : s ∈ S} if S provided
∅ otherwise

2: sufficient← False
3: while ¬sufficient do
4: φ← LLM(q,R,P)
5: I ← L(φ,P)
6: x← X (I, φ,G)
7: sufficient← D(x, q)
8: P ← P ∪ {x}
9: end while

10: return A(x, φ, q)

Key insight #2: LLMs are not good neural executors.

LLMs underperform (Markeeva et al., 2024; Taylor et al.,
2024) on graph algorithm simulation and in particular the
Bellman-Ford algorithm (Cormen et al., 2022), when tested
on larger instances. This is not an expressivity issue of the
transformer architecture (De Luca & Fountoulakis, 2024),
but to our best knowledge, no LLM has reported a robust
performance on graph algorithms. This observation is im-
portant in the context of graph-RAG, because SOTA link
prediction approaches such as ULTRA (Galkin et al., 2024a)
build on NBFNet (Zhu et al., 2021), which is a variation of
the Bellman-Ford algorithm. Even if LLMs would improve
on their graph-reasoning capabilities in the upcoming years,
LLM inference would remain significantly less efficient:
a back-of-the-envelope calculation, assuming near-perfect
LLM conditions (linear attention, one output token, etc.)
would still take 106 times more FLOPs than lightweight
models, such as graph neural networks – see Appendix A.

In light of these observations, we hypothesise that efficient
and effective query execution on KGs can be better achieved
through the use of specialized neural query executors, rather
than with pure LLM-based approaches.

3.1. ULTRAG

Our framework is visualised in Figure 1 and described in de-
tail in Algorithm 1, with corresponding parts colour coded
for clarity. Apart from the LLM and the neural query ex-
ecutor X , the other key components in our recipe are the
entity linker L, the sufficiency decider D, and the arbitrator
A. The algorithm operates over fuzzy sets with membership
functions in F = [0, 1]|V|. It proceeds iteratively construct-

ing queries and refining a set of partial answers P , until the
membership function yielded by the neural query executor is
deemed sufficient to answer the question. The partial answer
set P consits of fuzzy sets, and it is instantiated at the begin-
ning of the loop with seed information P = {xs = 1v=s}
if available; otherwise P is set to be the empty set. At each
iteration, after the query φ is constructed, the entity linker
populates the leaves of the query with a set of membership
functions I = {xl1 , . . . ,xlm}, which connect the mentions
associated to the leaves with the entities of the KG (m is
the number of leaves in the query). The result x ∈ F of the
query execution is then checked by the decider D and the
loop is terminated if x is enough to answer the query. The
arbitrator A finally converts x into the desired answer.

We strongly emphasise that our recipe is universal: we do
not fix L,D,A orX , nor we fix the type of logic used by the
LLM. In fact, in Section 3.2 and Section 4 we show that our
framework can be instantiated with only off-the-shelf tools.
However, experiments suggest that parametrising X as a
neural network capable of simulating symbolic reasoning
on knowledge graph is key to achieving good performance.
To our best knowledge, this is the first time that a neural
query executor is used in a KG RAG system.

3.2. ULTRAG-OTS: An off-the-shelf ULTRAG instance

3.2.1. QUERY CONSTRUCTION AND ENTITY LINKING

A simpler Domain Specific Language Our initial attempt
at constructing queries used a BetaE-style dataset format in-
spired from Ren & Leskovec (2020) and used in the original
ULTRAQUERY implementation. Unfortunately, this tuple
based Domain Specific Language (DSL) often resulted in
heavy bracketing (see Appendix C, Figure 4), which turned
out to be hard to handle even for flagship LLMs like GPT-5
(OpenAI, 2025b). In our initial experiments, depending on
the dataset, 15-30% of all queries were indeed found to be
invalid tuples, which made those queries unexecutable. It
is not our aim to deeply investigate this phenomenon, but
our conjecture is that it closely relates to oversquashing
(Barbero et al., 2024) and attention sinks (Gu et al., 2025;
Arroyo et al., 2025) in LLMs. We therefore developed a
custom DSL (Figure 2), where for projection the LLM only
has to append ‘->’ plus the relation identifier, and where
logical operators can be n-ary. This seemingly minor edit
reduced the number of invalid queries to less than 1%.

Entity linking A notable example of the generality of
our framework, via the fuzzy set parametrization, is that
it allows for the non-existence of uniquely identified seed
entities (i.e. single entities that can be used as starting point
for the reasoning process). Provided the target question,
in the absence of seed entity information (i.e. P = ∅),
the LLM can generate the structured query one needs to
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Query ::= Projection | Intersection

Projection ::= ( Entity, ( Relation, )) (leaf)
| ( Query, ( Relation, )) (chained)

Intersection ::= ( Query, Query )

Entity ::= "Q<digits>"

Relation ::= "P<digits>" | "P<digits> inv"

Query ::= Projection | Intersection

Projection ::= Entity -> Relation (leaf)
| Query -> Relation (chained)

Intersection ::= AND( Query , Query [, Query ...] )

Entity ::= "Q<digits>"

Relation ::= "P<digits>" | "P<digits> inv"

(((TA, (P1 inv,)), (DL, (P2 inv,))), (P4,)) AND(TA -> P1 inv, DL -> P2 inv) -> P4

Figure 2. Haskell-like grammar definitions for the old BetaE format (left) and our preferred DSL (right). The former uses nested tuples for
projections and (binary) intersections. Our DSL uses infix notation with -> for projections and n-ary tuples for intersections, attempting
to reduce bracket nesting. Below the horizontal line we show how the example from Figure 1 would transform (entities have been
abbreviated). The maximum nesting depth reduces from 4 to 1.

execute, together with mentions {l1, . . . , lm} that will be
matched against the knowledge base. Depending on simi-
larity, each entity vj ∈ V receives a probability of being the
seed entity. Specifically, in our experiments, the probabili-
ties p(vj is seed entity of li) are computed as:

dij = ∥enc(li)− enc(vj)∥2 (1)

p(vj is seed entity of li) =
exp

(
− (dij)

2

2σ2

)
∑

k exp
(
− (dik)2

2σ2

) (2)

where σ = 0.1. The encoding function enc can be imple-
mented with any pre-trained text embedding model (in our
experiments we used E5large (Wang et al., 2022)), and em-
beddings for vi ∈ V can be inferred once and cached for
multiple re-use. Given that knowledge bases can involve
hundreds of millions of entities, efficient similarity search
frameworks can additionally be used to enable ULTRAG
to deal with data of this scale. In our experiments, we used
FAISS (Johnson et al., 2019; Douze et al., 2024), specif-
ically its inverted file with product quantization (IVFPQ;
Jégou et al., 2011) approximate nearest neighbor search, to
efficiently implement Equation (1) and Equation (2), and
retrieve the k most similar entities to a given mention.

3.2.2. QUERY EXECUTION

For what concerns the choice of the neural query executor,
we opted for ULTRAQUERY (Galkin et al., 2024b) in our
off the shelf implementation due to its good zero-shot per-
formance, and robustness to different choices of projection
operators. Using relative relation type embeddings, in par-
ticular, allows the LLM to swap out a relation type with its
semantic equivalent (e.g. Child for Parent inv), while
achieving the same result from the query execution. We
expect that any improvements to knowledge graph founda-
tional models (e.g. concurrent works such as Huang et al.,

2025b) to naturally translate as improvements to ULTRAG,
and any relation projection method with similar foundational
properties (Arun et al., 2025) to have similar performance.
However, we will not embark on a quantitative evaluation on
the best choice of the neural query executor here – our aim
is to show that there exists an instantiation of ULTRAG that
can efficiently couple LLMs with query execution, while
achieving state-of-the-art performance.

SEPPR-tor ULTRAQUERY scales linearly with the graph
size both in time and in memory and can easily process all of
ogbl-wikikg2 (2.5M entities, 17M relations; Hu et al.,
2020) on a single GPU (GH200 96GB). While multi-GPU
setups can in principle be used for even larger KGs such as
Wikidata, this would introduce architectural complexity and
additional costs (both in terms of hardware and power con-
sumption). Based on the observation that if answers exist
for a generated query, they are typically located in a small
neighborhood of the seed entities, we introduced a graph
sampling step in our pipeline to reduce the amount of infor-
mation that is fed in input to the query executor. Inspired
by previous works in the graph machine learning literature
(Klicpera et al., 2019; Gasteiger et al., 2019; Frasca et al.,
2020), we resorted in particular to personalised page rank
(Page et al., 1998) to extract a relevant subgraph localized
around seed entities. Due to space limitations, we provide
details of this algorithm in Appendix B.

Privacy and utility We conclude by noting that our ap-
proach can add an additional layer of privacy. ULTRAG
is efficient enough to be deployed locally, even for large
databases. Further, unlike prior methods (Sun et al., 2024;
Chen et al., 2024; Li et al., 2025), the graph connectivity
itself is not directly exposed to the LLM, nor do we need
access to the LLM weights.
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3.2.3. SUFFICIENCY AND QUERY ARBITRATION

While in principle multiple iterations of our approach could
be useful to maximize performance (e.g. by breaking com-
plex questions in multiple sub-queries that are iteratively
executed), in our experiments we observed that a single
query execution is generally sufficient to achieve good per-
formance with modern powerful LLMs (GPT-5). Therefore,
D in ULTRAG-OTS is set to always return True, thus termi-
nating the while loop of Algorithm 1 after one iteration.

Finally, we implemented the arbitrator A as an LLM (GPT-
5) that takes as input the top ranked entities in x, together
with their probabilities, and then is prompted to return the
final set of answers. Using an LLM at this stage can be
particularly beneficial as it makes the overall approach able
to deal with questions that one cannot directly answer with
first-order logic (e.g. counting or temporal queries), while
also giving the LLM the possibility to use its knowledge to
correct mistakes done by the query executor.

4. Experiments
We present a set of experimental results that address multiple
Research Questions (Section 4.2), along with details on
the datasets and baselines used, and additional information
required to reproduce our implementation (Section 4.1).

4.1. Experimental Setup

KGQA Datasets and Knowledge Graphs For evaluating
ULTRAG , we focus on datasets where the ground-truth
source of information is already in the form of a knowledge
graph. This allows to remove any evaluation bias originating
from a knowledge-graph construction step (e.g. from web
or textual data). In line with this, datasets such as SimpleQA
(Wei et al., 2024) or FACTS (Cheng et al., 2025) were ex-
cluded in our experiments. In a recent work, Zhang et al.
(2025) additionally observed that the average correctness
rate in some prominent KGQA datasets is too low for reli-
able benchmarking. Therefore, we decided to not focus on
widely used but error-prone datasets such as WebQSP (Yih
et al., 2016, 52% correct) or CWQ (Talmor & Berant, 2018,
49% correct), and to prioritise instead newer, programmati-
cally verified, datasets: KGQAGen-10K (Zhang et al., 2025)
and GTSQA (Cattaneo et al., 2025). For the knowledge
graph we use the Wikidata graph from ogbl-wikikg2
for GTSQA, and the 20251202 dump of Wikidata, pro-
cessed as in Chen et al. (2024)3, for KGQAGen-10K.

Baselines We exclude methods constructing a knowledge
graph from another data format or retrieving documents
as context, based on some knowledge graph connectiv-

3https://github.com/liyichen-cly/PoG

ity (Luo et al., 2025b). Here we compare ULTRAG-OTS
against KG Agents (ToG Sun et al., 2024), path-based ap-
proaches (RoG; GCR Luo et al., 2024; 2025a), GNN-based
approaches (GNN-RAG Mavromatis & Karypis, 2025) and
hybrid approaches (SubgraphRAG Li et al., 2025). We
follow established literature in our choice of metrics. For
ranking of entities, we report ranking-based scores – Mean
Reciprocal Rank (MRR) and Hit@1,3,10. For final, discrete
set answers, we report exact match hits, recall and F1 of
precision and recall. Unlike recall, Hits measures the per-
centage of questions with at least one correct answer getting
retrieved.

Training and Hyperparameters We do not perform any
training on X ,A,D. When ground truth entities are avail-
able, no training of L is required. When they are not, a
training phase is required with FAISS for the construction
of the IVFPQ index (which takes less than 1 hr on a 64-
core ARM Neoverse-V2). This makes ULTRAG-OTS an
inductive approach, as opposed to baselines, which require
retraining for each dataset. For ULTRAQUERY (i.e. X ), we
used the official checkpoint4 that is trained on FB15k-237,
WN18RR, CoDEx-Medium.

For ULTRAG we did not perform hyperparameter searches
– our goal is to show a working instantiation not find the
most optimal one. With FAISS, we used 16, 384 cluster
centroids for IVF, and 128 8-bit subquantizers per vector
embedding for PQ. For Algorithm 2, we picked k = 30, 000
for both GTSQA and KGQAGen-10K. We passed the top
50 candidates to A, as ranked by X to be in the answer set.

We should point out that, in our experiments, all our queries
are constructed using only AND operators. While we could
have added other logical operators (OR, NOT, etc.), or allow
for cyclic queries (Cucumides et al., 2024), we found it
unnecessary for obtaining good performance. We also allow
the LLM to use inverse projections by adding an inv suffix.
This can be done regardless of whether inverses exist in the
knowledge graph or not (e.g. Child inv is semantically
equivalent to Parent). Lastly, we require the LLM to refer
to relations by their identifiers (P<digits> in Wikidata /
WikiKG2), instead of their labels or descriptions.

4.2. Results

RQ1: How much does neural query execution improve
a LLM’s ability to interface with KGs? We compare
the performance of ULTRAQUERY against the one achieved
by a symbolic executor, when receiving as input structured
queries generated by a LLM (GPT-5). For both methods,
we run the queries on the WikiKG2 subgraphs provided in
GTSQA and rank the entities by their probability to be in

4https://github.com/DeepGraphLearning/
ULTRA/tree/ultraquery
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Figure 3. Comparison of ULTRAQUERY vs symbolic query execution on GTSQA. Both receive identical queries generated by the LLM.
Number inside brackets denotes projections, concatenation of expression denotes intersection. Best viewed on screen.

Table 1. Comparison on question-specific graphs, for GTSQA
(WikiKG2) and KGQAGen-10k (Wikidata).

GTSQA KGQAGen-10k

Model Hits Recall F1 Hits Recall F1

GPT-5-mini 33.42 31.92 31.82 62.18 59.17 59.58
GPT-4.1 33.72 32.63 32.36 56.21 53.38 53.93
GPT-5 46.36 44.40 44.16 67.96 65.08 65.27

ToG 64.73 61.99 62.06 80.97 75.03 76.10

GCR 60.83 58.41 58.15 86.11 79.89 80.22
RoG 76.51 74.61 73.99 88.43 84.69 84.92

GNN-RAG 76.76 74.95 74.90 82.56 77.98 78.92

SubgraphRAG (200) 84.34 81.66 81.62 89.76 85.52 86.28

ULTRAG-OTS 92.66 91.05 89.29 92.04 90.77 88.82

the answer set (for symbolic execution each entity receives a
score equal to 1 or 0 based on the result of the executor). In
Figure 3 we compare the MRR, and the hit@10 produced for
WikiKG2. As we can see, ULTRAQUERY consistently out-
performs the query executor in retrieving the answer nodes
across all the considered classes of answers in both sce-
narios, achieving a class average improvement of 18.58%
(MRR) and 24.09% (hit@10). Due to space constraints,
additional metrics and results with Wikidata subsampled
to 30,000 nodes using Algorithm 2 are presented in Ap-
pendix D. Taken together, the results highlight the benefit
of using a neural query executor to make our framework re-
silient to both LLM and KG noise. Additional experiments
comparing the performance obtained with ULTRAQUERY
using noiseless queries generated by an oracle, to the ones
produced by the LLM can be found in the Appendix in Ta-
ble 6. These highlight that, while GPT-5 is generally able
to produce queries that correctly retrieve the answer nodes,
this is by no means perfect, and further improvements in the
LLM’s query generation capabilities can only be expected to
improve the performance discussed in the next paragraphs.

RQ2: How does ULTRAG-OTS compare in performance
against other KG-RAG approaches? To answer RQ2,
we break down evaluation in two different parts. First, we
compare ULTRAG-OTS and our baselines on the WikiKG2
subgraphs provided in GTSQA (Cattaneo et al., 2025) and

on subgraphs of similar size constructed from Wikidata via
PPR for KGQAGen-10K (Zhang et al., 2025) (Table 1). For
both datasets, proof edges and answer nodes are always
contained in the considered subgraphs, adding them back
if they were lost during subsampling. This setting repre-
sents a simplified controlled version of a real-world scenario,
where all the information a model needs to answer a given
question is guaranteed to be available in the considered
subgraph. As a result, this provides a suitable testbed for
evaluating our LLM plus neural query executor framework,
which is the core novel component of ULTRAG. On GT-
SQA, ULTRAG achieves 92.66% exact match hits, 91.05%
recall, and 89.29% F1. This represents an improvement of
+8.32% in hits, +9.39% in recall, and +8.03% in F1 over
the second best performing baseline (SubgraphRAG with
200 retrieved triples (Li et al., 2025)). On KGQAGen-10k,
ULTRAG achieves 92.04% hits, 90.77% recall, and 88.82%
F1, outperforming the best baseline (again SubgraphRAG
(200)) by respectively +2.28%, +5.25%, and +2.54%. In
the second part of our evaluation, we compare performance
of the full pipeline described for ULTRAG-OTS against
similar end-to-end pipelines implemented for RoG, GNN-
RAG and SubgraphRAG (200) (the three best performing
baselines in Table 1). For these baselines, we use a LLM
(GPT-5) to retrieve mentions that the LLM believes to be
relevant for answering the provided question. We then link
said mentions with entities in the provided KGs and extract
relevant subgraphs in the same way we do for ULTRAG-
OTS. Table 2 provides a comparison of this evaluation for
both transductive and inductive reasoning settings, together
with results for an intermediate step, where we assume seed
entities to be given. As we can see, ULTRAG-OTS outper-
forms all methods in our evaluation, in most cases achieving
a double digit improvement in F1 on the considered datasets.

RQ3: How does ULTRAG-OTS perform with differ-
ent LLMs (both of different families and sizes)? For
this particular research question we report in Table 7 (in Ap-
pendix F due to space constraints) an ablation study showing
the performance achieved by ULTRAG-OTS with LLMs
of the GPT and DeepSeek (Liu et al., 2025) families. For
these experiments, we used PPR subgraphs extracted from
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Table 2. Comparison on PPR subgraphs extracted from the ground-truth seed entities and seed entities obtained via Entity Linking. PPR
subgraphs contain up to 30,000 nodes. All models use GPT-5 as reasoning LLM. We color-code settings that require transductive
and inductive reasoning for the considered baselines; for GTSQA (Wikidata), we used baseline models originally trained on GTSQA
(WikiKG2). We leave a ‘-’ where a baseline cannot be applied.

Ground-truth seed nodes Entity Linking

GTSQA (WikiKG2) GTSQA (Wikidata) KGQAGen-10k GTSQA (WikiKG2) GTSQA (Wikidata) KGQAGen-10k

Model Hits Recall F1 Hits Recall F1 Hits Recall F1 Hits Recall F1 Hits Recall F1 Hits Recall F1

RoG 72.63 70.73 69.81 62.55 59.81 58.93 86.25 82.60 82.68 72.00 69.97 68.88 60.64 57.66 56.85 82.42 78.89 79.22
GNN-RAG 64.98 62.89 62.70 - - - 81.04 76.66 77.56 51.91 49.36 49.59 - - - 72.89 69.04 69.53
SubgraphRAG (200) 73.98 71.14 70.91 63.29 59.60 59.56 80.47 75.88 76.54 71.82 69.37 69.01 58.61 55.43 55.04 76.68 72.63 73.17
ULTRAG-OTS 90.81 89.39 87.18 86.74 84.47 82.08 90.62 89.41 87.63 85.70 83.71 81.08 72.93 70.48 66.60 83.98 82.59 80.58

Table 3. Average efficiency per query on PPR subgraphs extracted
for GTSQA from WikiKG2 (top) and Wikidata (bottom) with
ground-truth seed nodes. All models use GPT-5 as reasoning LLM.
Non-API running times are measured on GH200 chips, excluding
API calls and PPR computation.

KG Model API cost Non-API
time (s)

Input
tokens

Output
tokens

Cache hit
%

WikiKG2

RoG 0.011$ 1.9± 0.5 0.9K 2.2K 0
GNN-RAG 0.012$ 9.9± 2.3 1.5K 2.1K 0
SubgraphRAG (200) 0.012$ 16.7± 3.8 2.7K 2.1K 0
ULTRAG-OTS 0.014$ 0.10± 0.0 23K 2.2K 93.77

Wikidata
RoG 0.013$ 4.0± 1.1 1.1K 2.5K 0
SubgraphRAG (200) 0.014$ 20.9± 3.5 3.1K 2.4K 0
ULTRAG-OTS 0.017$ 0.15± 0.1 69K 2.3K 95.99

Wikidata starting from ground truth seed entities. While
using GPT-5 for both query generation and arbitration yields
best performance (likely due to its reasoning capabilities),
we note that all the tested combinations achieve good results
in our analysis. Interestingly, the combination of GPT-5, for
query generation, and GPT-5-mini, for arbitration, achieves
close performance to our best model, suffering a reduction
of only 4% in Hits and F1 (∼7% for recall). These find-
ings suggest that lighter LLMs could possibly be used in
ULTRAG whenever cost considerations are of relevance (es-
pecially for the arbitration stage, which likely requires less
reasoning), while maintaining good performance overall.

RQ4: How does ULTRAG-OTS compare with previous
KG-RAG approaches in terms of efficiency? To assess
the efficiency of ULTRAG-OTS, we measured the average
API cost per query with our LLM of choice (GPT-5), the
average (non-API) runtime, and the average number of in-
put/output tokens processed/generated by the LLM for the
top-3 baselines of Table 1 and ULTRAG-OTS. All experi-
ments start from the PPR subgraphs extracted from either
WikiKG2 or Wikidata. We note that this comparison ex-
cludes entity linking and the subgraph extraction phases, as
these are not defined for any of the considered baselines.
Results for GTSQA are reported in Table 3 and commented
here, while results and analysis for KGQAGen are available
in Appendix G. On WikiKG2 subgraphs, ULTRAG-OTS is
19x/99x/167x faster than RoG/GNN-RAG/SubgraphRAG
in terms of non-API time per query (similar results also
hold for Wikidata subgraphs). Due to the presence of rela-

tion types in the prompt and two API calls, ULTRAG-OTS
processes between 25x and 62x more input tokens than the
baselines. However, 94−96% of these tokens are cached by
GPT-5 (due to our prompts being structurally identical), lim-
iting both cost and computational complexity. The average
number of output tokens is comparable across all meth-
ods. In terms of API cost, ULTRAG-OTS is 23% to 27%
more expensive than the baselines (due to the larger size of
the input), however, we emphasize that no additional cost
would be required for extracting relevant mentions from in-
put queries with ULTRAG-OTS, while all baselines would
incur extra costs for this step in an end-to-end pipeline5.
Moreover, as shown in Table 7, ULTRAG-OTS achieves
a better performance than the baselines even when using
smaller and cheaper LLMs, in which case ULTRAG-OTS
compares favourably both in terms of results and efficiency.

5. Conclusions
In this work we introduced ULTRAG, a universal modu-
lar framework for Knowledge Graph Question Answering
systems. Our off-the-shelf implementation, ULTRAG-OTS,
achieves state-of-the-art results across a variety of settings
and is able to effectively handle Wikidata-scale KGs in
an end-to-end QA pipeline. Despite showing strong per-
formance in standard KGQA settings, ULTRAG-OTS has
limitations that may constrain its applicability for some
real-world use cases. In particular, ULTRAG-OTS does
not natively support temporal queries, which would require
extending our methodology to Temporal Knowledge Graphs
(Lin et al., 2023). Similarly, ULTRAG-OTS might under-
perform on Knowledge HyperGraphs due to its reliance on
ULTRA, which has been shown to be suboptimal in this
setting (Huang et al., 2025c). Addressing these limitations
constitutes an interesting research direction that we plan to
investigate further in future work.

5With GPT-5 for mention extraction, baselines would incur an
extra 0.003$ (+490 outp. tok.) per query, making costs comparable.
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Arroyo, Á., Barbero, F., Blayney, H., Bronstein, M., Dong,
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Veličković, P. Transformers need glasses! information
over-squashing in language tasks. Advances in Neural
Information Processing Systems, 37:98111–98142, 2024.

Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and
Yakhnenko, O. Translating embeddings for modeling
multi-relational data. Advances in neural information
processing systems, 26, 2013.

Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Rutherford,
E., Millican, K., Van Den Driessche, G. B., Lespiau, J.-B.,
Damoc, B., Clark, A., et al. Improving language models
by retrieving from trillions of tokens. In International
conference on machine learning, pp. 2206–2240. PMLR,
2022.

Bronstein, M. M., Bruna, J., Cohen, T., and Veličković,
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A. The Cost of Running LLMs – a FLOPs
Analysis

This appendix provides a coarse-grained floating point op-
erations (FLOPs) comparison between a message-passing
graph neural network (GNN) and a middle-sized LLM, in
particular GPT-OSS-120B (OpenAI, 2025a), under sim-
plified but explicit assumptions. The goal is to illustrate
order-of-magnitude compute differences incurred by us-
ing an unnecessarily large architecture rather than precise
hardware-level performance. We note that this is a smaller
GPT-class LLM than the ones we used, so the LLM compute
flops are quite optimistic.

A.1. GNN Assumptions and FLOPs calculation

We consider a L = 6 layer message-passing GNN with
hidden dimension d = 64 (Galkin et al., 2024a, Appendix
C). Let N denote the number of nodes and E denote the
number of edges in the graph.

Each GNN layer consists of the following operations:

mij = hi + hj

mi =
∑

j∈N (i)

mij

h′
i = MLP(mi)

The update MLP is a 2-layer perceptron with dimensions
64 → 64 → 64, applied independently to each node. As
this is strictly a FLOP analysis, we do not account for irreg-
ular access patterns, which can influence wall-clock GNN
runtime.

Message computation For each edge, an elementwise
addition of two d-dimensional vectors is performed:

FLOPsmsg = E × d

Aggregation Aggregation is implemented as a sum over
incoming messages, incurring one addition per feature per
edge:

FLOPsaggr = E × d

Update MLP Each linear layer of size d × d requires
approximately 2d2 FLOPs per node (counting one multiply
and one add). For a two-layer MLP:

FLOPsMLP ≈ 2× 2d2N = 4d2N

Combining all terms and substituting for d = 64 gives:

FLOPsGNN, layer ≈ 2Ed+ 4d2N = 128E + 16384N

For L = 6 layers:

FLOPsGNN ≈ 6(128E + 16384N) = 768E + 98304N
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A.2. LLM Assumptions and FLOPs calculation

We compare against a GPT-OSS-120B, with the following
overly simplifying assumptions:

• Active parameters per token are Pactive ≈ 5.1× 109 as
per OpenAI (2025a, Table 1).

• FLOPs per token are twice the active parameters – one
add and one multiply per active parameter.

FLOPstoken ≈ 10.2× 109

• Input sequence length is T = N + E tokens.

• One output token is generated

• Quadratic attention costs are ignored, assuming some
perfect KV-caching/compression algorithm. Attention
would otherwise further disadvantage the LLM at large
scales.

These additional assumptions further lower the bound on
total LLM compute.

LLM FLOPs Total FLOPs for prompt prefill and one
decoding step:

FLOPsLLM ≈ FLOPstoken×(T+1) ≈ 10.2×109×(N+E)

A.3. Numerical Example

Assume we have a graph with N = 3,000 nodes and E =
30,000 edges. This is considerably smaller than Wikidata
or our top-30,000 PPR graph.

FLOPsGNN = 768× 30,000 + 98,304× 3,000

≈ 3.18× 108 FLOPs

FLOPsLLM = 10.2× 109 × 33,000

≈ 3.37× 1014 FLOPs

The ratio of compute is:

FLOPsLLM

FLOPsGNN
≈ 1.06× 106

Thus, for the considered graph size and architectures, a
single inference pass of the LLM requires approximately
six orders of magnitude more floating point operations than
the full 6-layer GNN.

Algorithm 2 Seed Entity Personalized PageRank (SEPPR)

Require: Graph G = (V, E), seed set S: either (i) crisp
set S ⊆ V if ground-truth entities known, or (ii) set
of fuzzy sets {{pi(v)}v∈V}i from entity linking (see
Equation (2)), damping factor α = 0.85, T = 5, k

Ensure: Top-k nodes sorted by PPR scores
1: x0 ← 0 {Initialize probability vector}
2: if S is crisp set then
3: x0[v] ← 1/|S| for all v ∈ S {Case (i): uniform

weights}
4: else
5: x0[v]←

∑
i pi(v) for all v ∈ V {Case (ii): Combine

probabilities across fuzzy sets}
6: x0 ← x0/

∑
u∈V x0[u] {Renormalize}

7: end if
8: x← x0

9: for t = 1 to T do
10: x′[v]←

∑
(u,v)∈E

x[u]
degree[u] for all v ∈ V {Diffuse}

11: x ← αx′ + (1 − α)x0 {Teleport to starting nodes
with probability α}

12: end for
13: return top-k nodes by x values

B. SEPPR
We present our implementation in Algorithm 2. Differently
from past works:

• when we use ground-truth seed entities, we initialise
the boundary condition x0 to be a uniform signal
placed on the seed entities;

• when entity linking is used instead, x0[v] is set to be
the (normalized) sum of probabilities of v being one of
the seed entities.

After initialisation, T probability diffusion steps take place
and then the knowledge graph is subsampled to the top-k
nodes with highest x[v]. Differently from ULTRAQUERY,
our PPR algorithm processes only a mono-dimensional sig-
nal, and as a result it can fit on a single GPU (GH200 96GB),
even for web scale KGs such as Wikidata.

In our experiments, we set k = 30, 000. However, the num-
ber of edges in the subgraphs induced by the PPR nodes
cause out-of-memory issues for certain baselines. To rem-
edy that, we prune the number of PPR nodes to ensure that
there are no more than 500,000 edges in the subgraphs for
the baselines.
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C. BetaE nesting example

Full Query:
(((TA, (P1 inv, )), (DL, (P2 inv, ))), (P4, ))

Breakdown:
Projection 1: (TA, (P1 inv, ))

Projection 2: (DL, (P2 inv, ))

Intersection: (Proj 1, Proj 2)

Final Projection: (Intersection, (P4, ))

Figure 4. BetaE format representation of the Turing Award query
example from Figure 1 (entities have been abbreviated). Projec-
tions follow the language defined in Figure 2, left. The LLM is
tasked with producing the full query; the breakdown is added only
for human readability.

D. Neural vs Symbolic
As discussed in the main text, we present the full table of re-
sults for WikiKG2. The neural executor provides a clear ad-
vantage over symbolic execution, with average gains (com-
puted by averaging the per-hop “Avg” columns in the tables)
of 18.58% (MRR), 15.40% (Hit@1), 21.14% (Hit@3), and
24.09% (Hit@10).

In addition to full results on WikiKG2 in Table 4, in Table 5
we provide the results of neural vs symbolic query execution
performance on PPR subgraphs extracted from Wikidata us-
ing seed entities available in (Cattaneo et al., 2025). As
already highlighted in the main text of the paper, the neural
query executor consistently outperforms symbolic execution
across the considered metrics and classes of queries (only
exception on Wikidata being Hit@1 for class (2)(2), where
the symbolic executor has a gain of 3.12%). Compared to
WikiKG2 subgraphs, the absolute performance is generally
lower on Wikidata, which can be the result of both an in-
creased amount of noise in the queries (as a result of the
larger set of entities and relation types available in Wikidata)
and possibly noise in the extracted subgraph due to the addi-
tional PPR extraction phase. This said, while performance
degrade to some extent, they still appear good even in this
more challenging scenario, and the relative advantage of
neural over symbolic execution remains substantial.

E. Ground-truth queries vs LLM generated
queries on WikiKG2

In Table 6 we compare performance of our chosen neu-
ral query executor (ULTRAQUERY) when processing GT
queries vs LLM-generated queries on the WikiKG2 sub-
graphs of GTSQA (Cattaneo et al., 2025). As we can see,
the hop-averaged performance gap (”Avg” columns in the
table) between ground-truth and LLM-generated queries
appears to be generally growing with query complexity,

starting at 4.32% of MRR for 1-hop subgraphs, and ending
with 13.53% MRR for 4-hops (similar trends also appear for
the other considered metrics). This highlights the challenge
of query generation for complex multi-hop reasoning.

F. ULTRAG with Different LLMs
In Table 7 we provide a comparison of ULTRAG-OTS per-
formance with different LLMs. For this analysis, we used
GTSQA using PPR subgraphs extracted from Wikidata with
ground-truth seed entities.

G. Runtime costs on WikiKG2 and Wikidata
In Table 8 we show average API costs per query, average
non-API times, and average number of input / output to-
kens processed / generated by the LLM (GPT-5) on KGQA-
Gen subgraphs extracted from Wikidata. On this dataset,
ULTRAG-OTS is 15x faster than RoG, 122x faster than
GNN-RAG, and 130x faster than SubgraphRAG, in terms
of non-API time per query. In terms of number of input to-
kens, ULTRAG-OTS processes between 22x and 50x more
tokens compared to the baselines (again due to the pres-
ence of relation types in the input prompt and two API
calls). However, as it was the case for GTSQA, 96% of
these tokens are cached by GPT-5. Interestingly, average
number of output tokens and API costs are ∼2x larger for
ULTRAG-OTS compared to the baselines, which appear
more efficient on this dataset. We note however, that state-
of-the-art performance (Hits= 86.07%, Recall= 84.45%,
F1= 83.91%) can be still achieved on KGQAGen with UL-
TRAG-OTS, at a fraction of the cost ($0.0036), by using
GPT-5-mini for both generation and arbitration in place of
GPT-5 (ULTRAG-OTS implemented with GPT-5-mini is
actually the cheapest solution in our comparison). This
highlights that, while KGQAGen questions requires larger
amounts of output tokens for producing valuable results
with our methodology, questions there appear to be simpler:
ULTRAG-OTS with lighter and less skillful LLMs can still
outperform baselines that use GPT-5. As it was the case for
GTSQA, we also highlight that in an end-to-end pipeline,
no additional cost would be required for mention extrac-
tion with ULTRAG-OTS, while all the considered baselines
would incur extra costs for this additional step6.

6If GPT-5 was used for this, all baselines would incur an addi-
tional cost of 0.004$ per query, while also showing an increase of
780 in the average number of output tokens produced.
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Table 4. Comparison of neural (UltraQuery) vs symbolic query execution on LLM-generated queries from GTSQA using WikiKG2
subgraphs (in %). Class notation as in Cattaneo et al. – number inside brackets denotes hops, concatenation of expression denotes
intersection. Both executors receive identical queries generated by the LLM.

Metric # hops = 1 # hops = 2 # hops = 3 # hops = 4

(1) (1)(1) (1)(1)(1) (1)(1)(1)(1) Avg (2) (2)(1) ((1)(1)) (2)(2) ((1)(1))(1) Avg (3) ((2)(1)) (3)(1) (2(1)(1)) Avg (4) Avg

Neural executor (UltraQuery)

MRR 93.25 94.48 97.96 96.36 95.51 85.24 86.19 93.28 95.17 84.01 88.78 82.78 92.00 90.30 88.35 88.36 82.54 82.54
Hit@1 91.33 93.17 96.94 95.93 94.34 82.67 82.48 92.00 93.05 80.00 86.04 77.50 87.69 88.00 85.00 84.55 76.22 76.22
Hit@3 94.67 95.00 98.98 96.75 96.35 87.33 87.99 93.60 97.60 86.17 90.54 87.87 93.85 90.67 92.27 91.16 88.22 88.22
Hit@10 96.00 97.78 98.98 96.75 97.38 88.67 92.13 96.80 97.84 93.33 93.75 90.65 100.00 96.00 93.64 95.07 92.22 92.22

Symbolic executor

MRR 90.03 79.05 80.13 82.12 82.83 75.11 59.51 77.62 74.84 64.96 70.41 56.13 76.95 58.78 62.28 63.53 64.08 64.08
Hit@1 90.00 78.67 79.59 82.11 82.59 74.67 59.06 77.60 74.82 63.33 69.90 55.65 76.92 58.00 61.67 63.06 64.00 64.00
Hit@3 90.00 79.33 80.61 82.11 83.01 75.33 59.84 77.60 74.82 66.67 70.85 56.20 76.92 59.33 63.03 63.87 64.00 64.00
Hit@10 90.00 79.33 80.61 82.11 83.01 76.00 60.24 77.60 74.82 66.67 71.07 56.76 76.92 59.33 63.03 64.01 64.00 64.00

Improvement (Neural - Symbolic)

MRR +3.22 +15.43 +17.83 +14.24 +12.68 +10.13 +26.68 +15.66 +20.33 +19.05 +18.37 +26.65 +15.05 +31.52 +26.07 +24.82 +18.46 +18.46
Hit@1 +1.33 +14.50 +17.35 +13.82 +11.75 +8.00 +23.42 +14.40 +18.23 +16.67 +16.14 +21.85 +10.77 +30.00 +23.33 +21.49 +12.22 +12.22
Hit@3 +4.67 +15.67 +18.37 +14.64 +13.34 +12.00 +28.15 +16.00 +22.78 +19.50 +19.69 +31.67 +16.93 +31.34 +29.24 +27.29 +24.22 +24.22
Hit@10 +6.00 +18.45 +18.37 +14.64 +14.37 +12.67 +31.89 +19.20 +23.02 +26.66 +22.69 +33.89 +23.08 +36.67 +30.61 +31.06 +28.22 +28.22

Table 5. Comparison of neural (UltraQuery) vs symbolic query execution on LLM-generated queries from GTSQA on PPR subgraphs
extracted from Wikidata (in %). Both executors receive identical queries generated by the LLM.

Metric # hops = 1 # hops = 2 # hops = 3 # hops = 4

(1) (1)(1) (1)(1)(1) (1)(1)(1)(1) Avg (2) (2)(1) ((1)(1)) (2)(2) ((1)(1))(1) Avg (3) ((2)(1)) (3)(1) (2(1)(1)) Avg (4) Avg

Neural executor (UltraQuery)

MRR 91.07 86.74 91.14 90.19 89.78 77.01 78.43 88.19 77.87 74.89 79.28 61.04 75.81 75.44 72.64 71.23 70.69 70.69
Hit@1 90.00 83.65 88.61 87.26 87.38 74.00 74.69 85.60 69.54 69.17 74.60 54.44 66.15 66.67 64.97 63.06 65.22 65.22
Hit@3 91.33 88.38 93.88 93.09 91.67 78.67 81.73 89.60 82.73 78.61 82.27 65.28 86.15 81.33 76.50 77.31 73.44 73.44
Hit@10 93.33 92.38 93.88 94.31 93.47 85.33 84.88 94.40 93.17 83.00 88.16 72.22 89.23 90.00 86.32 84.44 82.44 82.44

Symbolic executor

MRR 84.45 74.30 71.01 77.89 76.91 70.05 58.12 76.27 73.94 62.94 68.26 45.96 63.97 57.84 64.29 58.02 65.04 65.04
Hit@1 84.00 73.33 69.73 77.24 76.08 69.33 57.32 76.00 72.66 61.67 67.40 44.17 63.08 56.00 62.68 56.48 64.00 64.00
Hit@3 84.67 74.67 72.45 78.59 77.59 70.67 58.90 76.80 75.54 63.33 69.05 47.50 64.62 59.33 67.10 59.64 64.67 64.67
Hit@10 85.33 76.00 72.45 78.86 78.16 72.00 59.69 76.80 76.26 65.00 69.95 48.61 64.62 60.00 67.10 60.08 67.78 67.78

Improvement (Neural - Symbolic)

MRR +6.62 +12.44 +20.13 +12.30 +12.87 +6.96 +20.31 +11.92 +3.93 +11.95 +11.01 +15.08 +11.84 +17.60 +8.35 +13.22 +5.65 +5.65
Hit@1 +6.00 +10.32 +18.88 +10.02 +11.30 +4.67 +17.37 +9.60 -3.12 +7.50 +7.20 +10.27 +3.07 +10.67 +2.29 +6.57 +1.22 +1.22
Hit@3 +6.66 +13.71 +21.43 +14.50 +14.07 +8.00 +22.83 +12.80 +7.19 +15.28 +13.22 +17.78 +21.53 +22.00 +9.40 +17.68 +8.77 +8.77
Hit@10 +8.00 +16.38 +21.43 +15.45 +15.32 +13.33 +25.19 +17.60 +16.91 +18.00 +18.21 +23.61 +24.61 +30.00 +19.22 +24.36 +14.66 +14.66

Table 6. ULTRAQUERY per-class performance metrics on WikiKG2 subgraphs contained in GTSQA (in %). To generate ground-truth
structured queries (i.e. queries provided by the oracle), given a subgraph with the answer as the root node, we perform a breadth-first
traversal, identify leaves, and work upwards to construct the query.

Metric # hops = 1 # hops = 2 # hops = 3 # hops = 4

(1) (1)(1) (1)(1)(1) (1)(1)(1)(1) Avg (2) (2)(1) ((1)(1)) (2)(2) ((1)(1))(1) Avg (3) ((2)(1)) (3)(1) (2(1)(1)) Avg (4) Avg

With ground-truth queries

MRR 99.33 100.00 100.00 100.00 99.83 99.56 100.00 100.00 100.00 100.00 99.91 98.61 100.00 99.83 97.12 98.89 96.07 96.07
Hit@1 98.67 100.00 100.00 100.00 99.67 99.33 100.00 100.00 100.00 100.00 99.87 97.78 100.00 99.67 94.55 98.00 94.00 94.00
Hit@3 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.44 100.00 100.00 100.00 99.86 98.00 98.00
Hit@10 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.44 100.00 100.00 100.00 99.86 98.00 98.00

With LLM-generated queries

MRR 93.25 94.48 97.96 96.36 95.51 85.24 86.19 93.28 95.17 84.01 88.78 82.78 92.00 90.30 88.35 88.36 82.54 82.54
Hit@1 91.33 93.17 96.94 95.93 94.34 82.67 82.48 92.00 93.05 80.00 86.04 77.50 87.69 88.00 85.00 84.55 76.22 76.22
Hit@3 94.67 95.00 98.98 96.75 96.35 87.33 87.99 93.60 97.60 86.17 90.54 87.87 93.85 90.67 92.27 91.16 88.22 88.22
Hit@10 96.00 97.78 98.98 96.75 97.38 88.67 92.13 96.80 97.84 93.33 93.75 90.65 100.00 96.00 93.64 95.07 92.22 92.22

Improvement (LLM generated queries - GT queries)

MRR -6.08 -5.52 -2.04 -3.64 -4.32 -14.32 -13.81 -6.72 -4.83 -15.99 -11.13 -15.83 -8.00 -9.53 -8.77 -10.53 -13.53 -13.53
Hit@1 -7.34 -6.83 -3.06 -4.07 -5.33 -16.66 -17.52 -8.00 -6.95 -20.00 -13.83 -20.28 -12.31 -11.67 -9.55 -13.45 -17.78 -17.78
Hit@3 -5.33 -5.00 -1.02 -3.25 -3.65 -12.67 -12.01 -6.40 -2.40 -13.83 -9.46 -11.57 -6.15 -9.33 -7.73 -8.69 -9.78 -9.78
Hit@10 -4.00 -2.22 -1.02 -3.25 -2.62 -11.33 -7.87 -3.20 -2.16 -6.67 -6.25 -8.79 0.00 -4.00 -6.36 -4.79 -5.78 -5.78
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Table 7. Comparison of ULTRAG-OTS with different LLMs on
GTSQA (Wikidata) using ground-truth seed entities (in %). PPR
graphs have up to 30,000 nodes. With A → B, we describe a
setting where we used LLM A for query generation and B for
arbitration.

LLM Hits Recall F1 API cost

ULTRAG
- GPT-5×2 86.74 84.47 82.08 0.017$
- GPT-5→GPT-5-mini 82.37 77.83 78.41 0.009$
- GPT-5-mini→GPT-5 80.71 78.19 75.72 0.011$
- DeepSeek-reasoner×2 75.77 72.40 72.05 0.005$
- GPT-5-mini×2 75.71 71.08 71.60 0.004$

Table 8. Average efficiency per query on PPR subgraphs extracted
for KGQAGen-10K from Wikidata with ground-truth seed nodes.
All models use GPT-5 as reasoning LLM. Non-API running time
measured on GH200 chips, excluding API calls and PPR computa-
tion.

KGQAGen-10K API cost Non-API
time (s)

Input
tokens

Output
tokens

Cache hit
%

RoG 0.008$ 3.1± 0.9 1.4K 1.4K 0
GNN-RAG 0.008$ 25.8± 4.4 1.4K 1.4K 0
SubgraphRAG (200) 0.009$ 27.5± 3.9 3.1K 1.5K 0
ULTRAG-OTS 0.019$ 0.21± 0.1 69K 2.8K 96.06

- GPT-5-mini 0.004$ 0.15± 0.1 69K 2.4K 95.53
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