3.1.22.6. unit_scaling.optim.AdamW
- class unit_scaling.optim.AdamW(params: Iterable[Tensor] | Iterable[Dict[str, Any]], lr: float | Tensor = 0.001, *args: Any, weight_decay: float = 0, independent_weight_decay: bool = True, allow_non_unit_scaling_params: bool = False, **kwargs: Any)[source]
An lr-scaled version of
torch.optim.AdamWfor u-muP.\[ \begin{align}\begin{aligned}\begin{split}\begin{aligned} &\rule{110mm}{0.4pt} \\ &\textbf{input} : \gamma \text{(lr)}, \: \beta_1, \beta_2 \text{(betas)}, \: \theta_0 \text{(params)}, \: f(\theta) \text{(objective)}, \: \epsilon \text{ (epsilon)} \\ &\hspace{13mm} \lambda \text{(weight decay)}, \: \textit{amsgrad}, \: \textit{maximize} \\ &\textbf{initialize} : m_0 \leftarrow 0 \text{ (first moment)}, v_0 \leftarrow 0 \text{ ( second moment)}, \: \widehat{v_0}^{max}\leftarrow 0 \\[-1.ex] &\rule{110mm}{0.4pt} \\ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\\end{split}\\\begin{split} &\hspace{5mm}\textbf{if} \: \textit{maximize}: \\ &\hspace{10mm}g_t \leftarrow -\nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm}\textbf{else} \\ &\hspace{10mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm} \theta_t \leftarrow \theta_{t-1} - \gamma \lambda \theta_{t-1} \\ &\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\ &\hspace{5mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \\ &\hspace{5mm}\widehat{m_t} \leftarrow m_t/\big(1-\beta_1^t \big) \\ &\hspace{5mm}\widehat{v_t} \leftarrow v_t/\big(1-\beta_2^t \big) \\ &\hspace{5mm}\textbf{if} \: amsgrad \\ &\hspace{10mm}\widehat{v_t}^{max} \leftarrow \mathrm{max}(\widehat{v_t}^{max}, \widehat{v_t}) \\ &\hspace{10mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/ \big(\sqrt{\widehat{v_t}^{max}} + \epsilon \big) \\ &\hspace{5mm}\textbf{else} \\ &\hspace{10mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/ \big(\sqrt{\widehat{v_t}} + \epsilon \big) \\ &\rule{110mm}{0.4pt} \\[-1.ex] &\bf{return} \: \theta_t \\[-1.ex] &\rule{110mm}{0.4pt} \\[-1.ex] \end{aligned}\end{split}\end{aligned}\end{align} \]For further details regarding the algorithm we refer to `Decoupled Weight Decay Regularization`_.
- Parameters:
params (iterable) – iterable of parameters to optimize or dicts defining parameter groups
lr (float, Tensor?) – learning rate (default: 1e-3). A tensor LR is not yet supported for all our implementations. Please use a float LR if you are not also specifying fused=True or capturable=True.
betas (Tuple[float, float]?) – coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999))
eps (float?) – term added to the denominator to improve numerical stability (default: 1e-8)
weight_decay (float?) – weight decay coefficient (default: 1e-2)
amsgrad (bool?) – whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False)
maximize (bool?) – maximize the objective with respect to the params, instead of minimizing (default: False)
foreach (bool?) – whether foreach implementation of optimizer is used. If unspecified by the user (so foreach is None), we will try to use foreach over the for-loop implementation on CUDA, since it is usually significantly more performant. Note that the foreach implementation uses ~ sizeof(params) more peak memory than the for-loop version due to the intermediates being a tensorlist vs just one tensor. If memory is prohibitive, batch fewer parameters through the optimizer at a time or switch this flag to False (default: None)
capturable (bool?) – whether this instance is safe to capture in a CUDA graph. Passing True can impair ungraphed performance, so if you don’t intend to graph capture this instance, leave it False (default: False)
differentiable (bool?) – whether autograd should occur through the optimizer step in training. Otherwise, the step() function runs in a torch.no_grad() context. Setting to True can impair performance, so leave it False if you don’t intend to run autograd through this instance (default: False)
fused (bool?) – whether the fused implementation is used. Currently, torch.float64, torch.float32, torch.float16, and torch.bfloat16 are supported. (default: None)
- add_param_group(param_group: Dict[str, Any]) None
Add a param group to the
Optimizers param_groups.This can be useful when fine tuning a pre-trained network as frozen layers can be made trainable and added to the
Optimizeras training progresses.- Parameters:
param_group (dict) – Specifies what Tensors should be optimized along with group specific optimization options.
- load_state_dict(state_dict: Dict[str, Any]) None
Load the optimizer state.
- Parameters:
state_dict (dict) – optimizer state. Should be an object returned from a call to
state_dict().
- register_load_state_dict_post_hook(hook: Callable[[Optimizer], None], prepend: bool = False) RemovableHandle
Register a load_state_dict post-hook which will be called after
load_state_dict()is called. It should have the following signature:hook(optimizer) -> None
The
optimizerargument is the optimizer instance being used.The hook will be called with argument
selfafter callingload_state_dictonself. The registered hook can be used to perform post-processing afterload_state_dicthas loaded thestate_dict.- Parameters:
hook (Callable) – The user defined hook to be registered.
prepend (bool) – If True, the provided post
hookwill be fired before all the already registered post-hooks onload_state_dict. Otherwise, the providedhookwill be fired after all the already registered post-hooks. (default: False)
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()- Return type:
torch.utils.hooks.RemoveableHandle
- register_load_state_dict_pre_hook(hook: Callable[[Optimizer, Dict[str, Any]], Dict[str, Any] | None], prepend: bool = False) RemovableHandle
Register a load_state_dict pre-hook which will be called before
load_state_dict()is called. It should have the following signature:hook(optimizer, state_dict) -> state_dict or None
The
optimizerargument is the optimizer instance being used and thestate_dictargument is a shallow copy of thestate_dictthe user passed in toload_state_dict. The hook may modify the state_dict inplace or optionally return a new one. If a state_dict is returned, it will be used to be loaded into the optimizer.The hook will be called with argument
selfandstate_dictbefore callingload_state_dictonself. The registered hook can be used to perform pre-processing before theload_state_dictcall is made.- Parameters:
hook (Callable) – The user defined hook to be registered.
prepend (bool) – If True, the provided pre
hookwill be fired before all the already registered pre-hooks onload_state_dict. Otherwise, the providedhookwill be fired after all the already registered pre-hooks. (default: False)
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()- Return type:
torch.utils.hooks.RemoveableHandle
- register_state_dict_post_hook(hook: Callable[[Optimizer, Dict[str, Any]], Dict[str, Any] | None], prepend: bool = False) RemovableHandle
Register a state dict post-hook which will be called after
state_dict()is called.It should have the following signature:
hook(optimizer, state_dict) -> state_dict or None
The hook will be called with arguments
selfandstate_dictafter generating astate_dictonself. The hook may modify the state_dict inplace or optionally return a new one. The registered hook can be used to perform post-processing on thestate_dictbefore it is returned.- Parameters:
hook (Callable) – The user defined hook to be registered.
prepend (bool) – If True, the provided post
hookwill be fired before all the already registered post-hooks onstate_dict. Otherwise, the providedhookwill be fired after all the already registered post-hooks. (default: False)
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()- Return type:
torch.utils.hooks.RemoveableHandle
- register_state_dict_pre_hook(hook: Callable[[Optimizer], None], prepend: bool = False) RemovableHandle
Register a state dict pre-hook which will be called before
state_dict()is called.It should have the following signature:
hook(optimizer) -> None
The
optimizerargument is the optimizer instance being used. The hook will be called with argumentselfbefore callingstate_dictonself. The registered hook can be used to perform pre-processing before thestate_dictcall is made.- Parameters:
hook (Callable) – The user defined hook to be registered.
prepend (bool) – If True, the provided pre
hookwill be fired before all the already registered pre-hooks onstate_dict. Otherwise, the providedhookwill be fired after all the already registered pre-hooks. (default: False)
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()- Return type:
torch.utils.hooks.RemoveableHandle
- register_step_post_hook(hook: Callable[[Self, Tuple[Any, ...], Dict[str, Any]], None]) RemovableHandle
Register an optimizer step post hook which will be called after optimizer step.
It should have the following signature:
hook(optimizer, args, kwargs) -> None
The
optimizerargument is the optimizer instance being used.- Parameters:
hook (Callable) – The user defined hook to be registered.
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()- Return type:
torch.utils.hooks.RemovableHandle
- register_step_pre_hook(hook: Callable[[Self, Tuple[Any, ...], Dict[str, Any]], Tuple[Tuple[Any, ...], Dict[str, Any]] | None]) RemovableHandle
Register an optimizer step pre hook which will be called before optimizer step.
It should have the following signature:
hook(optimizer, args, kwargs) -> None or modified args and kwargs
The
optimizerargument is the optimizer instance being used. If args and kwargs are modified by the pre-hook, then the transformed values are returned as a tuple containing the new_args and new_kwargs.- Parameters:
hook (Callable) – The user defined hook to be registered.
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()- Return type:
torch.utils.hooks.RemovableHandle
- state_dict() Dict[str, Any]
Return the state of the optimizer as a
dict.It contains two entries:
state: a Dict holding current optimization state. Its contentdiffers between optimizer classes, but some common characteristics hold. For example, state is saved per parameter, and the parameter itself is NOT saved.
stateis a Dictionary mapping parameter ids to a Dict with state corresponding to each parameter.
param_groups: a List containing all parameter groups where eachparameter group is a Dict. Each parameter group contains metadata specific to the optimizer, such as learning rate and weight decay, as well as a List of parameter IDs of the parameters in the group.
NOTE: The parameter IDs may look like indices but they are just IDs associating state with param_group. When loading from a state_dict, the optimizer will zip the param_group
params(int IDs) and the optimizerparam_groups(actualnn.Parameters) in order to match state WITHOUT additional verification.A returned state dict might look something like:
{ 'state': { 0: {'momentum_buffer': tensor(...), ...}, 1: {'momentum_buffer': tensor(...), ...}, 2: {'momentum_buffer': tensor(...), ...}, 3: {'momentum_buffer': tensor(...), ...} }, 'param_groups': [ { 'lr': 0.01, 'weight_decay': 0, ... 'params': [0] }, { 'lr': 0.001, 'weight_decay': 0.5, ... 'params': [1, 2, 3] } ] }
- step(closure=None)[source]
Perform a single optimization step.
- Parameters:
closure (Callable, optional) – A closure that reevaluates the model and returns the loss.
- zero_grad(set_to_none: bool = True) None
Reset the gradients of all optimized
torch.Tensors.- Parameters:
set_to_none (bool) – instead of setting to zero, set the grads to None. This will in general have lower memory footprint, and can modestly improve performance. However, it changes certain behaviors. For example: 1. When the user tries to access a gradient and perform manual ops on it, a None attribute or a Tensor full of 0s will behave differently. 2. If the user requests
zero_grad(set_to_none=True)followed by a backward pass,.grads are guaranteed to be None for params that did not receive a gradient. 3.torch.optimoptimizers have a different behavior if the gradient is 0 or None (in one case it does the step with a gradient of 0 and in the other it skips the step altogether).