April Papers: Motion Prompting, Mamba Reasoning and Modeling Rewards
April has been a busy month for the AI research community, with ICLR (the first of the "big three" AI conferences of the year) taking place in Singapore. We're pleased to share summaries of a few of our favourite papers we've seen this month.
First up, Motion Prompting introduces flexible spatio-temporal trajectories, or "motion prompts", as a powerful new way to control nuanced dynamic actions and motion in video generation, overcoming the limitations of text prompts. This is followed by Inference-Time Scaling for Generalist Reward Modeling, which presents Self-Principled Critique Tuning (SPCT), a method that powers DeepSeek-GRM—a generalist reward model capable of generating adaptive, high-quality rewards and achieving strong performance gains through scalable inference-time compute. Finally, M1 looks at using a Mamba-based architecture to tackle reasoning problems, as a more computationally-efficient approach when compared to transformers with chains-of-thought.