Douglas Orr

May Papers: xLSTM, Schedule-Free Optimizers, and Multi-token prediction

May is always an eventful time of year for ML researchers, with final ICML paper decisions and ICLR taking place in early May, and NeurIPS submission deadlines closing the month. As ever, arXiv submissions continue to grow!

This month we take a look at three papers exploring new techniques to challenge the mainstream large-scale pretraining setup: transformers trained with next-token prediction optimized with Adam/AdamW.

The first paper, xLSTM, is a long-awaited deep dive into Sepp Hochreiter's new, improved RNN architecture, nearly 30 years after the original LSTM was published. Drawing inspiration from linear attention, the authors demonstrate scaling comparable to transformers up to 1.3B parameters.

We then take a look at Schedule-Free optimizers from a team at FAIR. The authors propose a new class of optimizers that require no finicky learning rate scheduling. By replacing gradient momentum terms in standard optimizers with parameter averages, the authors show faster convergence than scheduled optimizers on a wide battery of small-scale deep learning tasks.

A further paper from FAIR extends the standard pretraining setup for large language models from next-token to multi-token prediction. This particularly seems to improve performance for larger models and offers a natural choice of model to use for speculative sampling to accelerate inference.

A transformer walk-through, with Gemma

Transformer-based LLMs seem mysterious, but they don't need to. In this post, we'll walk through a modern transformer LLM, Google's Gemma, providing bare-bones PyTorch code and some intuition for why each step is there. If you're a programmer and casual ML enthusiast, this is written for you.

December Papers: FP8 Training & Simpler Transformers

The last month saw impressive developments in the space of efficient transformers and applied ML, from materials discovery to chip design.

Researchers at Microsoft showed that FP8 could be used in parts of the LLM training process that until now had been kept in higher-precision, and work from ETH Zurich suggested a simplified way of designing transformer-like models.

In terms of applications, DeepMind have impressive results showing that GNNs can be used in the discovery of new inorganic crystals — a key building block of many modern technologies. Nvidia have also trained up a model to assist their engineers on chip design. This is a neat feedback loop: their chip design has facilitated better LLMs, and now their LLMs could facilitate better chip design. How useful this will be in practice remains to be seen.