besskge.loss.LogSigmoidLoss
- class besskge.loss.LogSigmoidLoss(margin, negative_adversarial_sampling, negative_adversarial_scale=1.0, loss_scale=1.0)[source]
 The log-sigmoid loss function (see [SDNT19]).
Initialize margin-based loss function.
- Parameters:
 margin (
float) – The margin to be used in the loss computation.negative_adversarial_sampling (
bool) – seeBaseLossFunctionnegative_adversarial_scale (
float) – seeBaseLossFunctionloss_scale (
float) – seeBaseLossFunction
- get_negative_weights(negative_score)
 Construct weights of negative samples, based on their score.
- Parameters:
 negative_score (
Tensor) – : (batch_size, n_negative) Scores of negative samples.- Return type:
 - Returns:
 shape: (batch_size, n_negative) if
BaseLossFunction.negative_adversarial_samplingelse () Weights of negative samples.